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1. INTRODUCTION 

Wi-Fi  systems  are  ubiquitously  conveyed indoors and act as more than a vehicle for communication.  Some  of  the  

emerging applications  are  indoor  localization  [1],  seeing through-walls   [2],   gesture   recognition   [3],   are continuously  

revolutionizing  the  horizon  [4].  The Non-Line-Of-Sight  (NLOS)  propagation  is  major concerns   for   the   innovative   

designs   excel   in multipath – dense indoor scenarios. The severe and fickle attenuation of NLOS propagation decreases the 

communication link quality and degrades theoretical propagation  models.  The  past  decade  has  seen extensive  research  

tbat  such  phenomenon   [5],[6] , where the ability to identify the existence of the Line- Of – Sight (LOS)path serves as a 

primitive. 

Many research domains also depend upon the presence of the LOS path. For instance, NLOS propagation induces a positive 

bias in ranging [5], and generates spurious angular peaks for angle estimation [7]. The ability of a clear and short-range LOS 

path also gives other applications like wireless energy harvesting by ensuring tight electromagnetic coupling and thus high 

charging efficiency [8]. In a brief, the awareness of LOS and NLOS conditions, and further disentangling the LOS 

component, enhances all these frameworks. 

Achieving LOS/NLOS identification capability with commodity Wi-Fi infrastructure is a great challenge. Although many 

theoretical channel models have been proposed for LOS and NLOS propagation, a practical LOS identification scheme either 

requires channel profiles, which involves dedicated channel sounders, or assumes abundant randomness to bring the 

statistical models in effect. Towards more pervasive solutions, the most existing systems either employ extremely wideband 

signals like Ultra Wide Band (UWB), or resort to relatively long-range communications like cellular networks and often halt 

simulation. 

The Wi-Fi operates with a bandwidth of only 20MHz. To find the differences between LOS and NLOS conditions with the 

Wi-Fi infrastructure, we exploit two key observations (1) the recently exposed PHY layer information on commercial Wi-Fi 

devices reveals multipath channel characteristics at the granularity of OFDM subcarriers [14], which is much finer-grained 

than the traditional MAC layer RSS. (2) The spatial disturbance induced by natural mobility tends to magnify the randomness 

of NLOS paths, while retaining the deterministic nature of the LOS path, thus facilitating LOS identification via the statistical 

characteristics of the received signals. 

In this paper we propose the LOS identification system with commodity Wi-Fi infrastructure called Li-Fi. Utilizing the PHY 

layer channel state information reported by commercial Wi-Fi compatible Network Interface Card (NIC), we 

(1) eliminate unnecessary noise and NLOS paths with high delays in time domain, and (2) misuse frequency diversity to 

find the spatial disturbances of NLOS propagation. Through extensive evaluation, LiFi achieves an overall LOS detection 

rate of 90.42% 

with a false alarm rate of 9.34% for the temporal feature, and an overall LOS detection rate of 93.09% with a false alarm rate 

of 7.29% for the spectral feature. The combination of the two features achieves LOS and NLOS identification rates around 

95%. Our scheme is powerful to different propagation distances, channel attenuation and blockage diversity. 
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Abstract - wireless LANs, especially Wi-Fi have been pervasively conveyed and have cultivated myriad wireless communication 

services and ubiquitous computing applications. The main concern in designing these applications is to face harsh indoor 

propagation environments, especially Non- Line- Of- Sight (NLOS). The ability to find the presence of line-Of – sight (LOS) 

path acts as a key enabler for adaptive communication, cognitive radios, and robust localization. Empowering such capability 

on commodity Wi-Fi infrastructure on the other hand, is restrictive because of the coarse multipath determination with MAC-

layer received signal strength. In this paper we propose two PHY-layer channel-insights based elements from both the time and 

recurrence areas. To further split away from the intrinsic bandwidth limit of Wi-Fi, We propose Li-Fi a statistical LOS 

identification scheme with product Wi-Fi infrastructure, and assess it in typical indoor environments covering an area of 1500 

m2. The experimental results illustrates that Li-Fi accomplishes an overall LOS detection rate of 90.42% with a false alarm rate 

of 9.34% for the temporal feature and an overall LOS detection rate of 93.09% with a false alarm rate of 7.29% for the 

spectral feature. 
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In this paper, first we discuss about the Line Of Sight identification problem and existing approaches. We then discuss about 

feature extraction followed by detailed design and performances and finally we discuss limitations and conclude in last 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. THE LOS IDENTIFICATION PROBLEM A. Problem definition 

Wireless signals are often propagate through multiple paths in indoor environments as shown in fig.1. This figure illustrates 

two common cases. 

The LOS path is mixed with multiple NLOS paths. 

The LOS path is too harshly attenuated to discernible against the noise floor. 

The LOS identification problem is to perceive the availability of the LOS path in multipath propagation for each receiver 

location. 

It can be formulated as  Where H0& H1 are the hypothesis tests for the LOS and NLOS propagation respectively. P(LOS) 

and P(NLOS) denotes the probability of LOS and NLOS propagation respectively. 

 

 

 

2.1 Existing approaches 

The existing approaches can be cooperative or non- cooperative, and observe features in the time domain or the space 

domain. Our focus is mainly on single link LOS identification, where a Wi-Fi client infers conditions by analyzing received 

signals from one access point (AP). The single-link LOS/NLOS schemes categorized into three categories, i.e., range 

measurement based, channel characteristics based, and antenna array based. Table I provides a brief comparison of single 

link LOS identification schemes. The channel characteristics based single link LOS exhibits a reasonable trade-off between 

identification performance and system requirements. Hence we limit our scope to channel characteristics based approaches. 

The channel characteristics based approaches differentiate LOS and NLOS propagation through temporal channel 

characteristics. In theory, a multipath channel can be modeled as channel impulse response (CIR) h (τ): 

 

 

 

Where ai is the amplitude of the i
th

 path, θi is the phase of the i
th

 path and τi is the time delay of the i
th

 path. N is the total 

number of paths. δ (τ) is the Dirac delta function. Since the LOS path arrives above of NLOS path, the delay characteristics 

of received signals differ based on LOS and NLOS conditions. Hence various features depicts the power- delay 

characteristics, i.e., the shapes of CIR, are used for LOS or NLOS conditions. Tables II and III shows the shape-based and 

statistics- based features for LOS/NLOS identification using channel based characteristics, respectively. In general, the 

shape-based features give good performance with only one snapshot of the wireless channel which requires accurate CIR 

measurements. The statistics-based features are applicable to both narrow and wideband signals at the cost of multiple 

channel measurements. 

 

2.2 Challenges 

Despite large efforts on LOS identification, it remains an open issue how to design economical and Lght-weight LOS 

identification schemes with simply commodity Wi-Fi infrastructure. 

• Physical Layer information Unexplored: For many years, commercial narrowband e.g., GSM and wide band 

e.g.,Wi-Fi devices only report single-valued MAC layer RSS to higher layers, so limiting the performance of LOS 

identification. it's solely recently that finer-grained physical layer data, i.e., Channel State data (CSI), has been exposed on 

Wi-Fi infrastructure [14], that brings new opportunities for pervasive LOS identification with simply Wi-Fi. 

• Real-world analysis Lacking: extensive analysis has targeted on theoretical analysis and simulation of various 

UWB-based NLOS/LOS identification schemes. The real-world analysis of Wi-Fi-based LOS identification is crucial as a 
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result of (1) Wi-Fi networks are becoming more and more standard in everyday mobile computing; (2) UWB-based schemes 

might not be directly adapted to the limited bandwidth of Wi-Fi. 

 

3. FEATURE EXTRACTION AND MEASUREMENTS 

3.1 Channel State information: 

Towards a practical LOS identification scheme with commodity Wi-Fi infrastructure, we explore the recently available PHY 

layer information. Utilizing the readily available NTC and a modified driver, a trial version of Channel Frequency Response 

(CFR) within the Wi-Fi bandwidth is revealed to higher layers in the format of Channel State Information (CSI). Each CSI 

depicts the phase and amplitude of a subcarrier: 

 

 

 

 

Where H(fk) is that the CSI at the subcarrier with central frequency fk and / H(fk) denotes the phase of 

a subcarrier The CSI gives a finer- grained structure of wireless links when compared with the MAC layer RSS. 

 

3.2. Measurements with CSI 

Since CSI provides a sampled version of CIR, we conduct a measuring study on LOS identification using both shape-based 

and statistics-based channel characteristics with CSI. 

1) Shape-Based features With CSI: Shape-based features exploit the distinction in delay and power characteristics 

between LOS and NLOS propagation: Given  a  wireless  link,  signal  transmitted through the LOS path perpetually arrive 

first. 

If patent, the LOS path has weaker attenuation. 

The mean excess delay τm is defined as: 

 

 

 

Fig. 2. CDFs of shape-based features extracted from CSI under LOS/NLOS propagation. (a) Mean excess delay of CIR. (b) 

Kurtosis of CIR. 

 

Where h (τ) is the CIR. Kurtosis of CIR κ is calculated as: 

 

Where E{.} represents the sampling expectation over delay. μ|h| and σ|h| denote the mean and variance of the CIR 

amplitude |h(τ)|, respectively. τm and κ approximate the weighted average and peakedness of the received signal power 

delay profile, and generally, LOS conditions have a smaller τm (shorter average delay) and a bigger κ (an additional sharply 

distributed power delay profile). 

We extracted CSIs from 5000 packets measured underneath typical LOS and NLOS conditions, and calculated the 

respective CIRs via IFT. Fig. 2(a) and 

(b) describes the CDFs of the mean excess delay and kurtosis of CIR. whereas CIRs derived from CSI have shorter mean 

excess delay and larger kurtosis, a threshold to discriminate LOS and NLOS conditions could cause high false identification 

rate. 

2) Statistics-Based options With CSI: Statistics-based options exploit the distinction of LOS and NLOS propagation in the 

spatial domain. Signals that are travelling along NLOS paths tend to behave more randomly compared with those on a clear 

LOS path. We have chosen one model-based feature (Rician-K factor [13]) in  

 

3.3. Channel Statistics With Mobility 
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The shape based features are unfeasible due to insufficient bandwidth of Wi-Fi . to enable LOS identification with 

commercial Wi-Fi , statistics-based features are compensated for the crude CIR measurements by integrating multiple 

observations. The Rician-k factor also yields large errors. The main problem is that restricted by particular indoor floor plans 

and the relatively shot transmission distances, the NLOS paths may not be random, thus decreasing the validity of theoretical 

models. 

A key insight to induce additional randomness on NLOS paths is to involve mobility. As shown in fig.4, when the receiver1 

moves from RX1 to RX’1, the LOS path experiences slight variation, whereas the NLOS path suffers notable changes in 

transmission distances, inward angles, and channel attenuation. Yet just in case of undeceivable LOS path, almost all paths 

would fluctuate significantly throughout Receiver2’s 

Fig. 3.(a) An illustration of received envelope distribution. (b) Distribution of Rician-K factor with CSI. 

 

1) Skewness of Dominant Path Power: when the mobility amplifies the fluctuation of NLOS paths, there are two challenges 

remain: 

MAC layer RSS can be noisy, therefore irrelevant variations to the LOS path were induced. In mobile indoor environments, 

the selected features need to be light-weight and independent on specific distribution modeling owing to location changes and 

model degradation. 

We therefore use skewness to quantify the skewed characteristics. Mathematically, skewness s is defined as: 

 

 

Where x, μ and σ denotes the measurement, mean, and standard deviation, respectively. In general, the skewness feature 

under NLOS conditions exhibits larger positive trend and a threshold to differentiate LOS and NLOS conditions with high 

accuracy exists. 

2) Kurtosis of Frequency Diversity Variation: The principle to leverage frequency diversity for LOS and NLOS 

identification on mobile links is as follows. Assuming a constant gain antenna, that is common for commodity Wi-Fi 

hardware. In LOS dominant scenarios, the channel fading is comparatively flat since the LOS path dominates. In NLOS 

dominant scenarios, the greater multipath superposition ends up in additional notable frequency selective attenuation. 

Consequently, the CSIs measured from one packet could vary even if normalized to a similar frequency. That is, we have 

a tendency to normalize the CSI amplitudes of one received packet to the central frequency f0: 

 

 

 

Where H( fk) and Hnorm( fk) are the original and normalized amplitudes of the k
th

 subcarrier. fk is that 

the frequency of the k
th

 subcarrier. STDs under LOS propagation distribute additional peaked whereas those under NLOS 

propagation demonstrate an additional flat distribution. 

To quantify the peaked and flat STD distributions, we adopt kurtosis as a candidate feature. Kurtosis κ is defined as: 

 

 

 

 

 

where x, μ and σ denotes the measurement, mean, and standard deviation, respectively. 

 

4. PERFORMANCES 

In this section, we clearly explain about the experiment setup and the methodology, followed by detailed performance 

evaluation of Li-Fi in various indoor environments. 



 Issac Gaberiel. A, Dr Anita Jones Mary 087 

 

 

5. METHODOLOGY 

Testing environments: The measurements campaigns are conducted in office environments include corridors and rooms, 

covering an area approximately 1500 m
2
. The room doors are kept open while taking the measurements. For the corridors, we 

can use CSIs for LOS, through- wall and around corner propagation with a maximum transmitter- receiver distance of 30m. 

For rooms, we can select a grid o 23 testing locations separated by 2and 2 AP locations. The direct link from one transmitter 

to one receiver is a clear LOS path, partially blocked by furniture, humans, etc. 

Data collection: At the time of measurements, a TP-LINK TLWR741N wireless router is used as transmitter operating in 

IEEE802.11n AP mode at 2.4GHz. We use two receiver setups: a LENOVO laptop equipped with Intel 5300 NIC and a mini 

PC with external Intel 5300 NIC to take device diversity into consideration. The firmware is modified and the receiver pings 

packets from the AP to collect CSI measurements. A group of 30 CSIs are extracted from each packet and processed. To 

simulate natural human mobility, the receiver is placed on a wheeled desk of 0.8 m in height, and is pushed by two different 

volunteers. For each measurement, the receiver moves randomly within the range of 1m at a speed from 0.5 m/s to 2m/s. A 

Smartphone is attached to the receiver to record acceleration traces to measure the average speeds of movements. The ground 

truth is manually determined for each and  every test location based on whether a direct straight line exists between 

transmitter and the receiver. 

 

5.1 Overall identification performance 

To calculate the overall LOS identification performances of the two features, we plot the ROC (Receiver Operating 

Characteristic) curves of the two features for (1) skewness feature of static links (2) kurtosis feature of static links (3) 

skewness feature of mobile links (4) kurtosis feature of mobile links. 

The Roc curve is a plot between the LOS detection probability PD and the probability of false alarms PFA. It gives the 

tradeoff between false positives and false negatives of a detection algorithm for a wide range of thresholds. 

 

 

 

 

 

 

 

 

 

 

Fig.5: ROC curve of skewness and kurtosis                                            Fig 6: ROC curve of kurtosis 

 

Static Links vs. Mobile Links: As shown in Fig. 5, the performance of LOS identification on mobile links notably 

outperforms that on static links, indicating mobility increases the spatial disturbances of NLOS paths. Mobile links are more 

robust to accidental disturbance since receiver motion dominates the changes of propagation paths. In contrast, static links 

may suffer environmental dynamics (e.g., 

pedestrians), thus degrading identification performance. 

Skewness vs. Kurtosis: Given a constant false alarm rate of 10%, the LOS detection rates of both the skewness feature and 

the kurtosis feature exceed 90%. The more balanced LOS and NLOS detection 

rates of the skewness feature are 90.42% and 90.66%, while those for the kurtosis feature are 93.09% and 92.71%. The 

kurtosis feature performs slightly better than the skewness feature. A partial explanation might be that the skewness feature 

relies on extracting the dominant paths, which is error-prone due to lack of synchronization. However, the kurtosis feature is 

more sensitive to mobility, as its performance dramatically deteriorates on static links. 

Combining Skewness and Kurtosis: Since LOS propagation tends to have low skewness feature and high kurtosis feature, we 

combine the two features and plot a linear separator using Support Vector Machine in Fig. 6. The combination yields 

marginal performance gain, with the optimal LOS and NLOS detection rates of 94.36% and 95.98%. 

 

5.2. Impact of Propagation Distance 

We collect data in the corridor with transmitter-receiver distances ranging from 5 m to 30 m. There is no direct correlation 

between the LOS identification rates and propagation distances, indicating a single 

threshold may be independent of propagation distances. Overall, the kurtosis feature marginally outperforms the skewness 

feature. For both features, modest performance degradation is observed for short distance (5 m/10 m) and relatively long 

distance (25 m/30 m). The degeneration in short distance cases is partially because the through-wall path becomes more 

dominant than the multipath with relatively short propagation distances. Basically, the attenuation of the wall is smaller than 

that suffered by NLOS due to both reflection and longer distance travelled. 
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5.3. Impact of Packet Quantity 

To evaluate the real time performance of LiFi, we calculate the LOS and NLOS detection rate with different number of 

packets, ranging from 500 packets to 2000 packets per measurement. Since the receiver downloads 500 packets from the AP 

per second, this corresponds to a time range of 1 s to 4 s. As shown in Fig. 10, the LOS and NLOS detection rates of both 

features retain around 90% with 3 to 4 seconds of measurements. However, the kurtosis feature is more sensitive to the 

decrease of packet number. With 1 s of measurements, its LOS detection rate drops to below 70% while the NLOS detection 

rate hovers around 90%, indicating a smaller threshold for more balanced detection rates. This is partially because the 

kurtosis feature does not filter out NLOS paths with long delays   the LOS path. Consequently, background instability and 

other NLOS paths (although LOS path dominates the propagation) may induce larger variation in case of insufficient packets. 

In contrast, the skewness 

feature achieves reasonable LOS and NLOS detection rates of 77.65% and 82.5%, respectively, even with measurements of 

only about 1s and the degradation trends of LOS and NLOS detection rates are more consistent. In summary, since both 

features belong to channel statistics based features, stable estimations rely on adequate received samples, especially with 

mobile links, unpredictable human behaviors and uncertain background dynamics, which potentially make LOS propagation 

less deterministic. It suffices to yield satisfactory performance with about 3s of measurements. 

 

5.4 Impact of Moving Speed 

To evaluate the impact of moving speed, we calculate the LOS and NLOS detection rate with average speeds of 0.5 m/s, 1.0 

m/s, 1.5 m/s and 2.0 m/s. As the receiver is moved by humans, we use a phone accelerometer to track receiver movements, 

and the volunteer listens to the beats generated by a metronome application to move the receiver back and forth at a certain 

speed. For each average speed, we collect 200 measurements for LOS and NLOS conditions. It is noticed that a slight 

performance fall at the moving speed of 2.0 m/s. The results indicate that our scheme is robust to Doppler effects. However, 

we fail to evaluate faster moving speeds due to the bulky receiver size. We envision CSI measurements on truly mobile  

devices for evaluation of the impact of Doppler effects within a wider receiver moving speed range. 

 

6. CONCLUSION 

In this study, we have explored PHY layer information to identify LOS conditions with WiFi. Noting that mobility magnifies 

the randomness of NLOS paths though holding the deterministic nature of the LOS component, we have explored channel 

statistics based features from both the time and the frequency domains in mobile links for LOS identification. We prototype 

LiFi, a statistical LOS identification scheme with off-the-shelf 802.11 NIC. Extensive evaluations demonstrates an overall 

LOS detection rate of 90.42% (93.09%) and a false alarm rate of 9.34% (7.29%) for the skewness (kurtosis) feature, whereas 

the combination of the two features achieves LOS and NLOS identification rates around 95%. We envision this work as an 

early step towards a bland, pervasive, and fine-grained channel profiling framework, which shows the way for WLAN based 

communication, sensing and control services in complex indoor environments. 
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